104 research outputs found

    Open-source virtual bronchoscopy for image guided navigation

    Get PDF
    This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance

    Типологія синтаксичних конструкцій в німецькій та українській мовах

    Get PDF
    Німецька та українська мови є односистемними мовами: обидві належать до індоєвропейської мовної сім’ї. Спільні корені та тривалий період ізольованого розвитку, вказують на те, що вказані мови мають характеристики подібності та відмінності в своій внутрішній будові. Німецька та українська належать до синтетичного типу флективних мов. Це означає, що граматичне значення слів у них виражається, здебільшого, за допомогою системи флексій і реалізується в межах одного графічного слова. Але флективна система німецької мови бідніша, ніж у слов’янських мовах.Немецкий и украинский языки являются односистемными языками: оба принадлежат к индоевропейской языковой семье. Общие корни и длительный период изолированного развития, указывают на то, что указанные языки имеют характеристики сходства и различия в своем внутреннем строении. Немецкий и украинский принадлежат к синтетическому типу флективных языков. Это означает, что грамматическое значение слов в них выражается, в основном, с помощью системы флексий и реализуется в пределах одного графического слова. Но флективная система немецкого языка беднее, чем в славянских языках.German and Ukrainian are single-system languages: both belong to the Indo-European language family. Common roots and a long period of isolated development, indicate that these languages ​​have characteristics of similarity and differences in their internal structure. German and Ukrainian belong to the synthetic type of inflectional languages. This means that the grammatical meaning of words in them is expressed, mainly, with the help of a system of inflexions and is realized within a single graphic word. But the inflectional system of the German language is poorer than in the Slavic languages

    Pre-clinical validation of virtual bronchoscopy using 3D Slicer

    Get PDF
    Lung cancer still represents the leading cause of cancer-related death, and the long-term survival rate remains low. Computed tomography (CT) is currently the most common imaging modality for lung diseases recognition. The purpose of this work was to develop a simple and easily accessible virtual bronchoscopy system to be coupled with a customized electromagnetic (EM) tracking system for navigation in the lung and which requires as little user interaction as possible, while maintaining high usability. The proposed method has been implemented as an extension to the open-source platform, 3D Slicer. It creates a virtual reconstruction of the airways starting from CT images for virtual navigation. It provides tools for pre-procedural planning and virtual navigation, and it has been optimized for use in combination with a of freedom EM tracking sensor. Performance of the algorithm has been evaluated in ex vivo and in vivo testing. During ex vivo testing, nine volunteer physicians tested the implemented algorithm to navigate three separate targets placed inside a breathing pig lung model. In general, the system proved easy to use and accurate in replicating the clinical setting and seemed to help choose the correct path without any previous experience or image analysis. Two separate animal studies confirmed technical feasibility and usability of the system. This work describes an easily accessible virtual bronchoscopy system for navigation in the lung. The system provides the user with a complete set of tools that facilitate navigation towards user-selected regions of interest. Results from ex vivo and in vivo studies showed that the system opens the way for potential future work with virtual navigation for safe and reliable airway disease diagnosis

    Navigational bronchoscopy for early lung cancer: a road to therapy

    Get PDF
    Peripheral lung nodules remain challenging for accurate localization and diagnosis. Once identified, there are many strategies for diagnosis with heterogeneous risk benefit analysis. Traditional strategies such as conventional bronchoscopy have poor performance in locating and acquiring the required tissue. Similarly, while computerized-assisted transthoracic needle biopsy is currently the favored diagnostic procedure, it is associated with complications such as pneumothorax and hemorrhage. Video-assisted thoracoscopic and open surgical biopsies are invasive, require general anesthesia and are therefore not a first-line approach. New techniques such as ultrathin bronchoscopy and image-based guidance technologies are evolving to improve the diagnosis of peripheral lung lesions. Virtual bronchoscopy and electromagnetic navigation systems are novel technologies based on assisted-computerized tomography images that guide the bronchoscopist toward the target peripheral lesion. This article provides a comprehensive review of these emerging technologies

    Optimizing parameters of an open-source airway segmentation algorithm using different CT images.

    Get PDF
    Background: Computed tomography (CT) helps physicians locate and diagnose pathological conditions. In some conditions, having an airway segmentation method which facilitates reconstruction of the airway from chest CT images can help hugely in the assessment of lung diseases. Many efforts have been made to develop airway segmentation algorithms, but methods are usually not optimized to be reliable across different CT scan parameters. Methods: In this paper, we present a simple and reliable semi-automatic algorithm which can segment tracheal and bronchial anatomy using the open-source 3D Slicer platform. The method is based on a region growing approach where trachea, right and left bronchi are cropped and segmented independently using three different thresholds. The algorithm and its parameters have been optimized to be efficient across different CT scan acquisition parameters. The performance of the proposed method has been evaluated on EXACT’09 cases and local clinical cases as well as on a breathing pig lung phantom using multiple scans and changing parameters. In particular, to investigate multiple scan parameters reconstruction kernel, radiation dose and slice thickness have been considered. Volume, branch count, branch length and leakage presence have been evaluated. A new method for leakage evaluation has been developed and correlation between segmentation metrics and CT acquisition parameters has been considered. Results: All the considered cases have been segmented successfully with good results in terms of leakage presence. Results on clinical data are comparable to other teams’ methods, as obtained by evaluation against the EXACT09 challenge, whereas results obtained from the phantom prove the reliability of the method across multiple CT platforms and acquisition parameters. As expected, slice thickness is the parameter affecting the results the most, whereas reconstruction kernel and radiation dose seem not to particularly affect airway segmentation. Conclusion: The system represents the first open-source airway segmentation platform. The quantitative evaluation approach presented represents the first repeatable system evaluation tool for like-for-like comparison between different airway segmentation platforms. Results suggest that the algorithm can be considered stable across multiple CT platforms and acquisition parameters and can be considered as a starting point for the development of a complete airway segmentation algorithm

    Automated catheter navigation with electromagnetic image guidance

    Get PDF
    This paper describes a novel method of controlling an endoscopic catheter by using an automated catheter tensioning system with the objective of providing clinicians with improved manipulation capabilities within the patient. Catheters are used in many clinical procedures to provide access to the cardiopulmonary system. Control of such catheters is performed manually by the clinicians using a handle, typically actuating a single or opposing set of pull wires. Such catheters are generally actuated in a single plane, requiring the clinician to rotate the catheter handle to navigate the system. The automation system described here allows closed-loop control of a custom bronchial catheter in tandem with an electromagnetic tracking of the catheter tip and image guidance by using a 3D Slicer. An electromechanical drive train applies tension to four pull wires to steer the catheter tip, with the applied force constantly monitored through force sensing load cells. The applied tension is controlled through a PC connected joystick. An electromagnetic sensor embedded in the catheter tip enables constant real-time position tracking, whereas a working channel provides a route for endoscopic instruments. The system is demonstrated and tested in both a breathing lung model and a preclinical animal study. Navigation to predefined targets in the subject's airways by using the joystick while using virtual image guidance and electromagnetic tracking was demonstrated. Average targeting times were 29 and 10 s, respectively, for the breathing lung and live animal studies. This paper presents the first reported remote controlled bronchial working channel catheter utilizing electromagnetic tracking and has many implications for future development in endoscopic and catheter-based procedures

    Peripheral tumour targeting using open-source virtual bronchoscopy with electromagnetic tracking: a multi-user pre-clinical study

    Get PDF
    Objectives: The goal was to demonstrate the utility of open-source tracking and visualisation tools in the targeting of lung cancer. Material and methods: The study demonstrates the first deployment of the Anser electromagnetic (EM) tracking system with the CustusX image-guided interventional research platform to navigate using an endobronchial catheter to injected tumour targets. Live animal investigations validated the deployment and targeting of peripheral tumour models using an innovative tumour marking routine. Results: Novel tumour model deployment was successfully achieved at all eight target sites across two live animal investigations without pneumothorax. Virtual bronchoscopy with tracking successfully guided the tracked catheter to 2–12 mm from the target tumour site. Deployment of a novel marker was achieved at all eight sites providing a reliable measure of targeting accuracy. Targeting accuracy within 10 mm was achieved in 7/8 sites and in all cases, the virtual target distance at marker deployment was within the range subsequently measured with x-ray. Conclusions: Endobronchial targeting of peripheral airway targets is feasible using existing open-source technology. Notwithstanding the shortcomings of current commercial platforms, technological improvements in EM tracking and registration accuracy fostered by open-source technology may provide the impetus for widespread clinical uptake of electromagnetic navigation in bronchoscopy

    Endometrial scratch injury before intrauterine insemination: is it time to re-evaluate its value? Evidence from a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVE: To assess the impact of endometrial scratch injury (ESI) on the outcomes of intrauterine insemination (IUI) stimulated cycles. DESIGN: Systematic review and meta-analysis. SETTING: Not applicable. PATIENT(S): Infertile women undergoing one or more IUI stimulated cycles. INTERVENTION(S): Randomized controlled trials (RCTs) were identified by searching electronic databases. We included RCTs comparing ESI (i.e., intervention group) during the course of IUI stimulated cycle (C-ESI) or during the menstrual cycle preceding IUI treatment (P-ESI) with controls (no endometrial scratch). The summary measures were reported as odds ratio (OR) with 95% confidence-interval (CI). MAIN OUTCOME MEASURE(S): Clinical pregnancy rate, ongoing pregnancy rate, multiple pregnancy rate, ectopic pregnancy rate, miscarriage rate. RESULT(S): Eight trials were included in the meta-analysis, comprising a total of 1,871 IUI cycles. Endometrial scratch injury was associated with a higher clinical pregnancy rate (OR 2.27) and ongoing pregnancy rate (OR 2.04) in comparison with the controls. No higher risk of multiple pregnancy (OR 1.09), miscarriage (OR 0.80), or ectopic pregnancy (OR 0.82) was observed in patients receiving ESI. Subgroup analysis based on ESI timing showed higher clinical pregnancy rate (OR 2.57) and ongoing pregnancy rate (OR 2.27) in patients receiving C-ESI and no advantage in patients receiving P-ESI. CONCLUSION(S): Available data suggest that ESI performed once, preferably during the follicular phase of the same cycle of IUI with flexible aspiration catheters, may improve clinical pregnancy and ongoing pregnancy rates in IUI cycles. Endometrial scratch injury does not appear to increase the risk of multiple pregnancy, miscarriage, or ectopic pregnancy

    Uterine fibroid size modifications during pregnancy and puerperium: evidence from the first systematic review of literature

    Get PDF
    PURPOSE: The influence of pregnancy on uterine fibroid size still remains an unsolved dilemma. Basing on current knowledge, physicians are not able to inform patients about the likelihood of uterine fibroids to modify their size during pregnancy. Study aim was to summarize available evidence concerning the size modifications of uterine fibroids during each trimester of pregnancy and during puerperium. METHODS: The review was reported following the PRISMA guidelines and registered in PROSPERO (registration number: CRD42017071117). A literature search was conducted in electronic database (PubMed, Embase, Sciencedirect, the Cochrane library and Clinicaltrials.gov) until July 2017. All studies evaluating fibroids' changes during pregnancy and puerperium by ultrasound or magnetic-resonance-imaging were included. Descriptive characteristics of studies and patients were collected. The modifications of uterine fibroid diameter and volume were the outcome measures. RESULTS: Concerning the first trimester of pregnancy, all authors reported a significant growth of uterine fibroids. Contradictory evidence was found about uterine fibroid modifications during the second and third trimesters, mainly supporting a slowdown during mid pregnancy and a subsequent size reduction during late pregnancy. Concerning the overall modifications during pregnancy and puerperium, poor evidence quality suggests that uterine fibroids do not modify their volume/slightly enlarge during pregnancy and subsequently reduce in size during puerperium. CONCLUSIONS: Uterine fibroids seem to be subject to a non-linear trend of modifications during pregnancy and puerperium, which may vary from myoma to myoma. Adequate evidence supports uterine fibroid systematic enlargement during the first trimester of pregnancy, while inconsistent evidence is available about the changes of uterine fibroids during second and third trimesters. In addition, the overall modifications of myomas during pregnancy and puerperium remain unclear
    corecore